

SoMo: Fast, Accurate Simulations of Continuum Robots in Complex Environments

[image: _images/rubiks_cross_new_wide_crop.jpg]
SoMo is a light wrapper around pybullet that facilitates
the simulation of continuum manipulators.

SoMo (SoftMotion) is a framework to facilitate the
simulation of continuum manipulator motion in PyBullet physics engine [https://github.com/bulletphysics/bullet3/tree/master/examples/pybullet]. In SoMo,
continuum manipulators are approximated as a series of rigid links
connected by spring-loaded joints. SoMo makes it easy to create URDFs of
such approximated manipulators and load them into pybullet’s rigid body
simulator. With SoMo, environments with various continuum manipulators
(such as hands with soft fingers or snakes) can be created
and controlled with only a few lines of code.

Table of Contents

	Getting Started
	Installation

	Basic Usage

	Scaling the World

	Examples
	Basic Examples

	Design Studies

	Whole-Arm Manipulation

	Locomotion

	Class Reference
	SoMo Manipulators

	SoMo Assemblies

	Generating Parameter Sweeps

	Contributing

Quick Install

Check out the Installation Instructions

Note

Coming soon: pip install!

Explore the Examples

Check out the Examples, or run any of the files in the examples folder. “examples/basic” is a great place to start!

Links

	Documentation: Read the Docs [https://somo.readthedocs.io/en/latest/]

	pip install: View on PyPi [https://pypi.org/project/somo/] (Not Launched Yet)

	Source code: Github [https://github.com/graulem/somo]

Contact

If you have questions, or if you’ve done something interesting with this package, get in touch with Moritz Graule!

If you find a problem or want something added to the library, open an issue on Github [https://github.com/graulem/somo/issues].

Citation

When citing SoMo, use this citation:

@inproceedings{graule2020somo,
 title={SoMo: Fast and Accurate Simulations of Continuum Robots in Complex Environments},
 author={Graule, Moritz A. and Teeple, Clark B and McCarthy, Thomas P and St. Louis, Randall C and Kim, Grace R and Wood, Robert J},
 booktitle={2021 IEEE International Conference on Intelligent Robots and Systems (IROS)},
 pages={In Review},
 year={2021},
 organization={IEEE}
}

Cited In…

SoMo has enabled other work:

	C.B. Teeple, R.C. St. Louis, M.A Graule, and R.J. Wood, Digit Arrangement for Soft Robotic Hands: Enhancing Dexterous In-Hand Manipulation, In Review, IROS 2021

	C.B. Teeple, G.R. Kim, M.A Graule, and R.J. Wood, An Active Palm Enhances Dexterity for Soft Robotic In-Hand Manipulation, ICRA 2021

SoMo in Action

 Getting Started

Getting Started

Here’s how to get up and running with SoMo.

	Installation

	Basic Usage

	Scaling the World

 Installation

Installation

Requirements

	Python 3.6 [https://www.python.org/downloads/release/python-360/] +

	Tested on:

	Ubuntu 16.04 and Ubuntu 18.04 with Python 3.6.9

	Ubuntu 20.04 with Python 3.6.9, 3.7.9 and 3.8.2

	Windows 10 with Python 3.7 and 3.8 through Anaconda [https://www.anaconda.com/products/individual#Downloads]

	Recommended: pip (sudo apt-get install python3-pip)

	Recommended (for Ubuntu): venv [https://docs.python.org/3/library/venv.html]
(sudo apt-get install python3-venv)

Setup

	Make sure your system meets the requirements

	Clone this repository

	Set up a dedicated virtual environment using venv

	Activate virtual environment

	Install requirements from this repo:
$ pip install -r requirements.txt

	Install this module:

	either by cloning this repo to your machine and using
pip install -e . from the repo root, or with

	pip install git+https://github.com/graulem/somo

	To upgrade to the newest version:
$ pip install git+https://github.com/graulem/somo --upgrade

 Basic Usage

Basic Usage

This will walk you through setting up your first manipulator and complete simulation.

On this page

	Set up a definition file

	Build a SoMo Manipulator from a definition

	Load the definition from a file directly

	Modify a definition before creating

	Control a manipulator

Set up a definition file

SoMo manipulators are defined as dictionaries describing one or more actuators, each of which is made up of several links and joints.

[image: ../_images/model_schematic.png]
Here is an example of a typical definition of a soft finger made up of one bending actuator. You can copy this or directly download it:

ihm_finger_def.yaml

Build a SoMo Manipulator from a definition

Note

This documentation is coming soon!

Load the definition from a file directly

Note

TODO

Modify a definition before creating

SoMo definitions are just python dictionaries, so you can load them in, make modifications, then instantiate a manipulator object.

Control a manipulator

Note

TODO

 Scaling the World

Scaling the World

Bullet physics works best for objects larger than 0.1 simulation units. This is important for us becasue many real soft robots are on the order of 0.1m in length, leaving us no room to discretize them into smaller links. We must scale the world up to avoid numerical precision errors in bullet.

Bullet physics guidelines

Unfortunately the bullet physics wiki has been down for over a year now, so we must use an archived version of the page HERE [https://web.archive.org/web/20170713085948/http://www.bulletphysics.org/mediawiki-1.5.8/index.php/Scaling_The_World]. In addition, there is a small typo in that wiki that makes a big difference in how we scale inertias as discussed HERE [https://pybullet.org/Bullet/phpBB3/viewtopic.php?f=9&t=4160&p=15526#p15516]. We use the convention agreed upon in the forum post.

Standard scaling laws

If we scale all lengths by X, we need to correct other variables:

	Property
	Scale
	Formula

	Angle
	1
	Theta_sim = 1.0 * Theta_real

	Angular Velocity
	1
	w_sim = 1.0 * w_real

	Length
	X
	L_sim = X * L_real

	Linear Velocity
	X
	v_sim = X * v_real

	Gravity
	X
	g_sim = X * g_real

	Forces
	X
	F_sim = X * F_real

	Torques
	X2
	T_sim = X2 * T_real

	Inertias
	X2
	I_sim = X2 * I_real

In addition, we could scale masses by a factor Y, leading to more corrections:

	Property
	Scale
	Formula

	Forces
	Y
	F_sim = Y*F_real

	Torques
	Y
	T_sim = Y*T_real

	Inertias
	Y
	I_sim = Y*I_real

Combining length and mass scaling, we get combined corrections:

	Property
	Scale
	Formula

	Forces
	X*Y
	F_sim = X*Y*F_real

	Torques
	X2*Y
	T_sim = X2*Y*T_real

	Inertias
	X2*Y
	I_sim = X2*Y*I_real

Note: We could choose a constant density, thus setting Y=X:raw-html-m2r:`³`. However, we do not actually need to do mass scaling according to the forum post from above, so we chose to set Y=1 for simplicity.

We set the sizes of objects in our world according to these units in the various URDF and actuator definition files, and it’s up to us to scale these dimensions accordingly. We also need to correct the gravitational constant when setting up our simulation. All other forces, torques, etc are calculated internally.

SoMo-specific scaling

Since we are discretizing the soft robots into rigid links with angular stiffness and damping terms, we need to correct these terms for the dimensional scale.

Preserve Torque Scaling:
Rotational Springs:
 T = K * (Theta-Theta_0)
X^2 * Y * T = X^2 * Y * K * (Theta-Theta_0)

Rotational Dampers:
 T = B * (w-w_0)
X^2 * Y * T = X^2 * Y * B * (w-w_0)

Therefore, we get the following scaling laws for rotational springs and dampers:

	Property
	Scale
	Formula

	Spring Stiffness
	X2
	K_sim = X2*K_real

	Damping
	X2
	B_sim = X2*B_real

We set these values in the joint definition file for each joint.

Scaling data back to real units

Since the simulations run with a certain length scaling, X, and mass scaling, Y, we need to scale the output data back to real units. Doing this is easy, just inverting all the relationships from above.

	Property
	Scale
	Formula

	Angle
	1
	Theta_real= Theta_sim

	Angular Velocity
	1
	w_real = w_sim

	Length
	1/X
	L_real = (1/X)*L

	Linear Velocity
	1/X
	v_real = (1/X)*v_sim

	Gravity
	1/X
	F_real = (1/X)*F_sim

	Forces
	1/X
	F_sim = X * F_real

	Torques
	1/X2
	T_real = (1/X2)*T_sim

	Inertias
	1/X2
	I_real = (1/X2)*I_sim

 Examples

Examples

Several examples of the power and versatillity of SoMo are shown here. You can find them in the examples folder [https://github.com/GrauleM/somo/tree/main/examples] in the github repo.

	Basic Examples
	Calibration to Hardware

	Blocked Force Testing

	SoMo Assemblies

	Design Studies

	Whole-Arm Manipulation
	Playing Basketball

	Locomotion
	Snake Locomotion

 Basic Examples

Basic Examples

These showcase basic functionalities.

	Calibration to Hardware

	Blocked Force Testing

	SoMo Assemblies

 Calibration to Hardware

Calibration to Hardware

Introduction

We are using a discretized model for soft actuators the converts continuous bending beams into rigid links and pin joints with torsional stiffnesses. To calibrate our simulated system to the real system, we need some way to relate deformation to joint angles.

Basic formulas

Deflection, \(\delta\) , of cantilever beam as a function of position, \(x\) along the beam, where \(\delta_L\) is the deflection at the tip, and \(L\) is the length of the beam:

\(\begin{align*} \delta(x) = \delta_L \left (\frac{3x^2}{2L_2} - \frac{x^3}{2L^3} \right) \\ \end{align*}\)

[image: beam with tip load]

A simple beam of length \(L\) with a tip load \(F\) undergoes a tip deflection \(\delta\)

Bending moment, \(M_b\) of a cantilever beam with a tip load, \(F_{tip}\), as a function of position, \(x\) along the beam:

\(\begin{align*} M_b = F_{tip}(L-x) \\ \end{align*}\)

Linear bending stiffness, \(K_b\) of a cantilever beam at the tip:

\(\begin{align*} K_b = \frac{F_tip}{\delta_L} \\ \end{align*}\)

Calibrating Joint Stiffnesses

For an actuator split evenly into \(N\) segments, we make a few assumptions:

	Bending stiffness represents the linear bending stiffness at the tip of the actuator at its unloaded state

	Assume small angles (for calibration purposes), so \(sin(\theta) = \theta\)

	We want to match the deflection of each segment with an appropriate spring force given the bending moment in the actuator.

[image: discretized beam with tip load]

The simple beam is discretized into \(N\) equal-length segments connected by pin joints.

We find the formula for the deflection at the tip of the first segment during a load at the actuator’s tip to be:

\(\begin{align*} \delta(x=\frac{L}{N}) &= \left (\frac{3(\frac{L}{N})^2}{2L_2} - \frac{(\frac{L}{N})^3}{2L^3} \right) \delta_L \\ &= \left (\frac{3L^2}{2N^2L^2} - \frac{L^3}{2N^3 L^3} \right) \delta_L \\ &= \left (\frac{3}{2N^2} - \frac{1}{2N^3} \right) \delta_L = \delta_1 \end{align*}\)

For the first segment with a length, \(\frac{L}{N}\), deflection \(\delta_1\), we can define a rotational spring constant, \(\kappa_1\), that achieves an angle, \(\theta_1\) when a torque, \(\tau_1\), is applied on the joint.

[image: A simple pin joint with rotational spring]

A simple pin joint with rotational spring

Thus, we obtain an equation for the spring constant:

\(\begin{align*} \kappa_1 = \frac{\tau_1}{\theta_1} \end{align*}\)

We can find what \(\theta_1\) needs to be using the formula:

\(\begin{align*} \sin(\theta_1) = \frac{\delta_1}{L_1} = \frac{\delta_1}{\frac{L}{N}} \end{align*}\)

and using the small angle assumption, we obtain \(\sin(\theta) = \theta\), so:

\(\begin{align*} \theta_1 = \frac{N\delta_1}{L} \end{align*}\)

Now, \(\tau_1\) is assumed to be the bending moment withheld by this first link (the moment at \(x=0\)). :

\(\begin{align*} \tau_1 &= F_{tip}(L-0) = F_{tip}L \end{align*}\)

Thus, we can move back to the joint stiffness:

\(\begin{align*} \kappa_1 = \frac{\tau_1}{\theta_1} &= \frac{F_{tip}L}{ \frac{N\delta_1}{L}} \\ &= \frac{F_{tip}L)}{ \frac{N}{L}\left (\frac{3}{2N^2} - \frac{1}{2N^3} \right) \delta_L } \\ &= \frac{L}{ \frac{N}{L}\left (\frac{3}{2N^2} - \frac{1}{2N^3} \right) }\frac{F_{tip}}{\delta_L } \\ \kappa_1 &= \frac{ 1 }{ \frac{3}{2N} - \frac{1}{2N^2} } L^2 K_b \end{align*}\)

Determining appropriate actuator torques

We need to determine the actuation moment applied to actuators. Many of our physical systems are air-driven, so we can use blocked-force measurements at various pressures to get a rough estimate of actuation torques at pressures of interest.

During a blocked force measurement, we assume all force produced is balancing the internal actuation moment. Given this assumption, we get:

\(\begin{align*} M_{act} = F_b L \end{align*}\)

Example:

[image: Real hardware]

Real soft robotic hand platform from [Abondance et al., 2020], where the mechanical properties of the fingers have been characterized.

From our paper on in-hand manipulation with soft fingers [Abondance et al., 2020], we measured the linear bending stiffnesses of our 0.1 m long fingers in the grasping and side axes:

\(\begin{align*} K_g =& 6.12 \text{ N/m} & K_s =& 29.05 \text{ N/m} \end{align*}\)

In our typical SoMo simulation of these fingers, we use 5 joints in each direction, so N = 5 and L = 0.1 m. Putting this through the formula for joint stiffnesses, we get:

\(\begin{align*} K_{g, sim} =& 0.219 \text{ N/m} & K_{s, sim} =& 1.038 \text{ N/m} \end{align*}\)

The last step is to scale the joint stiffnesses by the square of the world scale per the world scaling discussion. In many of our examples we use a world scale of 20, so scaling the stiffnesses by 400 results in:

\(\begin{align*} K_{g, sim} = 87.4 & \text{ sim stiffness units} & K_{s, sim} =& 415.0 \text{ sim stiffness units} \end{align*}\)

To apply realistic actuation torques to the system, we calibrate the grasping axis on the 100 kPa value, which produced 0.75 N of force over the 0.1m length finger body.

\(\begin{align*} \tau_{act} = M_{act} = F_b L = 0.075 \text{ Nm} \end{align*}\)

Then we transform torques by the square of the world scale, so if we want to apply 100 kPa to the real life fingers, the the simulated fingers need:

\(\begin{align*} \tau_{grasp} = 30 \text{ sim torque units} \end{align*}\)

For the side-axis, we explicitly control the actuation torques in simulation, but the real system uses a pressure differential. Based on a differential of 100kPa to achieve reasonable side-to-side motion in the hardware, we estimate approximately 3 times the value for the grasping axis based on observations, resulting in:

\(\begin{align*} \tau_{side} = 90 \text{ sim torque units} \end{align*}\)

All these values produce physically accurate simulations that seem to work well!

References

	abondance2020dexterous(1,2)

	Sylvain Abondance, Clark B Teeple, and Robert J Wood. A dexterous soft robotic hand for delicate in-hand manipulation. IEEE Robotics and Automation Letters, 5(4):5502–5509, 2020.

 Blocked Force Testing

Blocked Force Testing

Note

TODO

 SoMo Assemblies

SoMo Assemblies

Note

TODO

 Design Studies

Design Studies

SoMo can be used for a variety of design studies where building physical hardware would be prohibitively time-consuming.

 Whole-Arm Manipulation

Whole-Arm Manipulation

SoMo can be used for manipulation studies.

	Playing Basketball

 Playing Basketball

Playing Basketball

 Locomotion

Locomotion

SoMo can be used for locomotion studies

	Snake Locomotion

 Snake Locomotion

Snake Locomotion

 Class Reference

Class Reference

Each page contains details and full API reference for all the classes in the SoMo Framework.

For an explanation of how to use all of it together, see Basic Usage.

	SoMo Manipulators

	SoMo Assemblies

	Generating Parameter Sweeps

 SoMo Manipulators

SoMo Manipulators

SoMo provides an easy way to generate continuum manipulators. Manipulators can be comprised of several serially-chained actuators (SMActuatorDefinition), made up of a series of links (SMLinkDefinition) connected by spring-loaded joints (SMJointDefinition),

To actually implement a manipulator, you can define it in a dictionary or yaml/json file, and load the definition as a SMManipulatorDefinition object. The lower-level definitions are taken care of internally.

	
class somo.sm_link_definition.SMLinkDefinition(shape_type: str, dimensions: [Union[float, int]], mass: Union[float, int], inertial_values: [Union[float, int]], material_color: [Union[float, int]], material_name: str, origin_offset: [Union[float, int]] = None, visual_geometry_scaling_factor=1.0)

	SMLinkDescription is correct upon instantiation.

Example json representation:
link_example.json # todo update example presentation
{

shape_type: xx finish,
dimensions: xx finish,
mass: xx,
inertial_values: xx,
material_color: xx,
material_name: ,

}

	
static assert_required_fields(dict_definition: dict)

	

	
static from_file(file_path: str) → somo.sm_link_definition.SMLinkDefinition

	

	
static from_json(json_file_path: str) → somo.sm_link_definition.SMLinkDefinition

	

	
reduce_height(height_scaling_factor)

	

	
to_json()

	

	
class somo.sm_joint_definition.SMJointDefinition(joint_type: str, axis: Union[None, List] = None, limits: Optional[List] = None, spring_stiffness: Optional[Union[float, int]] = None, joint_neutral_position: Optional[Union[float, int]] = None, neutral_axis_offset: [Union[float, int, NoneType]] = None, joint_control_limit_force: [Union[float, int, NoneType]] = None)

	SMJointDefinition is correct upon instantiation.

Example json representation:
link_example.json # todo fix
{

xx

}

	
static assert_required_fields(dict_definition: dict)

	

	
static from_file(file_path: str) → somo.sm_joint_definition.SMJointDefinition

	

	
static from_json(json_file_path: str) → somo.sm_joint_definition.SMJointDefinition

	

	
to_json()

	

	
class somo.sm_actuator_definition.SMActuatorDefinition(actuator_length: Union[float, int], n_segments: int, link_definition: Union[somo.sm_link_definition.SMLinkDefinition, Dict, str], joint_definitions: [Union[somo.sm_joint_definition.SMJointDefinition, Dict, str]], planar_flag: Union[bool, int])

	
	
static assert_required_fields(dict_definition: dict)

	

	
static from_file(file_path: str) → somo.sm_actuator_definition.SMActuatorDefinition

	

	
static from_json(json_file_path: str) → somo.sm_actuator_definition.SMActuatorDefinition

	

	
to_json()

	

	
class somo.sm_manipulator_definition.SMManipulatorDefinition(n_act: Union[float, int], base_definition: Optional[somo.sm_link_definition.SMLinkDefinition], actuator_definitions: [Union[somo.sm_actuator_definition.SMActuatorDefinition, Dict, str]], manipulator_name: str, tip_definition: Optional[somo.sm_link_definition.SMLinkDefinition] = None, urdf_filename: Optional[str] = None, tip_definitions: Union[None, List] = None)

	
	
static assert_required_fields(dict_definition: dict)

	

	
static from_file(file_path: str) → somo.sm_manipulator_definition.SMManipulatorDefinition

	

	
static from_json(json_file_path: str) → somo.sm_manipulator_definition.SMManipulatorDefinition

	

	
to_json()

	

 SoMo Assemblies

SoMo Assemblies

You can connect several manipulators object into assemblies such as a hand with several fingers, or a body with legs.

Note

Documentation for this is coming soon!

 Generating Parameter Sweeps

Generating Parameter Sweeps

Once you have your environment set up, you can easily run parameter sweeps using the built-in sweep framework.

Warning

This is a work in progress. Some parts of this module are not very elegant, but we are working on this!

Base Functionality

	
class somo.sweep.BatchSimulation

	
	
load_run_list(todo_filename='runs_todo.yaml', recalculate=False)

	

	
run(run_function, parallel=True, num_processes=None)

	

	
class somo.sweep.DataLabeler(label_functions)

	
	
process_all(config_file, label_function=None, **kwargs)

	Process all datasets within a config file

	
set_global_scale(scale)

	

	
class somo.sweep.RunGenerator

	
	
from_file(config_file, todo_filename='runs_todo.yaml')

	Generate a set of runs from a config file

	
generate_params(config)

	Generate all permutations of a given set of sweep parameters

	
make_2d_slices(config)

	Make a simple set of runs using all permutations of sweep parameters

	
make_simple(config, save_todo=True)

	Make a simple set of runs using all permutations of sweep parameters

Experimental Classes

Warning

These classes enable experimental functionality. Use at your own risk.

	
class somo.sweep.ContourPlotter(config_file)

	
	
make_plots(labels=None, show=False, recalculate=False, num_bins=12)

	

	
plot_one(success_filename, labels=None, show=False, replace=False, aux_savepath=None)

	Make a plot of the grasp type/success rate of 2D sweep data.

	
set_axes_equal(in_set)

	

	
set_colors(status_colors=None)

	

	
set_status_colors(label_set=None, color_set=None, color_labels=None)

	

	
set_status_colors_dict(label_list)

	

	
set_status_colors_label(label_name='default', color_set=None)

	

	
class somo.sweep.GridPlotter(config_file)

	
	
make_plots(labels=None, show=False, recalculate=False)

	

	
plot_one(success_filename, labels=None, show=False, replace=False, aux_savepath=None)

	Make a plot of the grasp type/success rate of 2D sweep data.

	
set_axes_equal(in_set)

	

	
set_colors(status_colors=None, fingertip=None)

	

	
set_fingertip(state)

	

	
set_status_colors(label_set=None, color_set=None, color_labels=None)

	

	
set_status_colors_dict(label_list)

	

	
set_status_colors_label(label_name='default', color_set=None)

	

 Contributing

Contributing

Contributing Checklist

	only through a new branch and reviewed PR (no pushes to master!)

	always use Black Code Formatter [https://pypi.org/project/black/] for code formatting

	always bump the version of your branch by increasing the version
number listed in somo/_version.py

 Python Module Index

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 somo	

 	
 	
 somo.sweep	

 Index

Index

 A
 | B
 | D
 | F
 | G
 | L
 | M
 | P
 | R
 | S
 | T

A

 	
 	assert_required_fields() (somo.sm_actuator_definition.SMActuatorDefinition static method)

 	(somo.sm_joint_definition.SMJointDefinition static method)

 	(somo.sm_link_definition.SMLinkDefinition static method)

 	(somo.sm_manipulator_definition.SMManipulatorDefinition static method)

B

 	
 	BatchSimulation (class in somo.sweep)

D

 	
 	DataLabeler (class in somo.sweep)

F

 	
 	from_file() (somo.sm_actuator_definition.SMActuatorDefinition static method)

 	(somo.sm_joint_definition.SMJointDefinition static method)

 	(somo.sm_link_definition.SMLinkDefinition static method)

 	(somo.sm_manipulator_definition.SMManipulatorDefinition static method)

 	(somo.sweep.RunGenerator method)

 	
 	from_json() (somo.sm_actuator_definition.SMActuatorDefinition static method)

 	(somo.sm_joint_definition.SMJointDefinition static method)

 	(somo.sm_link_definition.SMLinkDefinition static method)

 	(somo.sm_manipulator_definition.SMManipulatorDefinition static method)

G

 	
 	generate_params() (somo.sweep.RunGenerator method)

L

 	
 	load_run_list() (somo.sweep.BatchSimulation method)

M

 	
 	make_2d_slices() (somo.sweep.RunGenerator method)

 	make_simple() (somo.sweep.RunGenerator method)

 	
 	
 module

 	somo.sweep

P

 	
 	process_all() (somo.sweep.DataLabeler method)

R

 	
 	reduce_height() (somo.sm_link_definition.SMLinkDefinition method)

 	
 	run() (somo.sweep.BatchSimulation method)

 	RunGenerator (class in somo.sweep)

S

 	
 	set_global_scale() (somo.sweep.DataLabeler method)

 	SMActuatorDefinition (class in somo.sm_actuator_definition)

 	SMJointDefinition (class in somo.sm_joint_definition)

 	
 	SMLinkDefinition (class in somo.sm_link_definition)

 	SMManipulatorDefinition (class in somo.sm_manipulator_definition)

 	
 somo.sweep

 	module

T

 	
 	to_json() (somo.sm_actuator_definition.SMActuatorDefinition method)

 	(somo.sm_joint_definition.SMJointDefinition method)

 	(somo.sm_link_definition.SMLinkDefinition method)

 	(somo.sm_manipulator_definition.SMManipulatorDefinition method)

 Quick Install

 SoMo is a light wrapper around pybullet that facilitates
the simulation of continuum manipulators.

SoMo (SoftMotion) is a framework to facilitate the
simulation of continuum manipulator motion in PyBullet physics engine [https://github.com/bulletphysics/bullet3/tree/master/examples/pybullet]. In SoMo,
continuum manipulators are approximated as a series of rigid links
connected by spring-loaded joints. SoMo makes it easy to create URDFs of
such approximated manipulators and load them into pybullet’s rigid body
simulator. With SoMo, environments with various continuum manipulators
(such as hands with soft fingers or snakes) can be created
and controlled with only a few lines of code.

Table of Contents

	Getting Started
	Installation

	Basic Usage

	Scaling the World

	Examples
	Basic Examples

	Design Studies

	Whole-Arm Manipulation

	Locomotion

	Class Reference
	SoMo Manipulators

	SoMo Assemblies

	Generating Parameter Sweeps

	Contributing

Quick Install

Check out the Installation Instructions

Note

Coming soon: pip install!

Explore the Examples

Check out the Examples, or run any of the files in the examples folder. “examples/basic” is a great place to start!

Links

	Documentation: Read the Docs [https://somo.readthedocs.io/en/latest/]

	pip install: View on PyPi [https://pypi.org/project/somo/] (Not Launched Yet)

	Source code: Github [https://github.com/graulem/somo]

Contact

If you have questions, or if you’ve done something interesting with this package, get in touch with Moritz Graule!

If you find a problem or want something added to the library, open an issue on Github [https://github.com/graulem/somo/issues].

Citation

When citing SoMo, use this citation:

@inproceedings{graule2020somo,
 title={SoMo: Fast and Accurate Simulations of Continuum Robots in Complex Environments},
 author={Graule, Moritz A. and Teeple, Clark B and McCarthy, Thomas P and St. Louis, Randall C and Kim, Grace R and Wood, Robert J},
 booktitle={2021 IEEE International Conference on Intelligent Robots and Systems (IROS)},
 pages={In Review},
 year={2021},
 organization={IEEE}
}

Cited In…

SoMo has enabled other work:

	C.B. Teeple, R.C. St. Louis, M.A Graule, and R.J. Wood, Digit Arrangement for Soft Robotic Hands: Enhancing Dexterous In-Hand Manipulation, In Review, IROS 2021

	C.B. Teeple, G.R. Kim, M.A Graule, and R.J. Wood, An Active Palm Enhances Dexterity for Soft Robotic In-Hand Manipulation, ICRA 2021

 Scaling the World

Scaling the World

Bullet physics works best for objects larger than 0.1 simulation units. This is important for us becasue many real soft robots are on the order of 0.1m in length, leaving us no room to discretize them into smaller links. We must scale the world up to avoid numerical precision errors in bullet.

Bullet physics guidelines

Unfortunately the bullet physics wiki has been down for over a year now, so we must use an archived version of the page HERE [https://web.archive.org/web/20170713085948/http://www.bulletphysics.org/mediawiki-1.5.8/index.php/Scaling_The_World]. In addition, there is a small typo in that wiki that makes a big difference in how we scale inertias as discussed HERE [https://pybullet.org/Bullet/phpBB3/viewtopic.php?f=9&t=4160&p=15526#p15516]. We use the convention agreed upon in the forum post.

Standard scaling laws

If we scale all lengths by X, we need to correct other variables:

	Property
	Scale
	Formula

	Angle
	1
	Theta_sim = 1.0 * Theta_real

	Angular Velocity
	1
	w_sim = 1.0 * w_real

	Length
	X
	L_sim = X * L_real

	Linear Velocity
	X
	v_sim = X * v_real

	Gravity
	X
	g_sim = X * g_real

	Forces
	X
	F_sim = X * F_real

	Torques
	X2
	T_sim = X2 * T_real

	Inertias
	X2
	I_sim = X2 * I_real

In addition, we could scale masses by a factor Y, leading to more corrections:
*Property***	***Scale***	***Formula***
———————-	—————–:	———————————
**Forces	Y	F_sim = Y*F_real
Torques	Y	T_sim = Y*T_real
Inertias	Y	I_sim = Y*I_real

Combining length and mass scaling, we get combined corrections:
*Property***	***Scale***	***Formula***
———————-	—————–:	———————————
**Forces	X*Y	F_sim = X*Y*F_real
Torques	X2Y	T_sim = X:raw-html-m2r:`²`*Y*T_real
**Inertias*	X2*Y	I_sim = X2*Y*I_real

Note: We could choose a constant density, thus setting Y=X:raw-html-m2r:`³`. However, we do not actually need to do mass scaling according to the forum post from above, so we chose to set Y=1 for simplicity.

We set the sizes of objects in our world according to these units in the various URDF and actuator definition files, and it’s up to us to scale these dimensions accordingly. We also need to correct the gravitational constant when setting up our simulation. All other forces, torques, etc are calculated internally.

SoMo-specific scaling

Since we are discretizing the soft robots into rigid links with angular stiffness and damping terms, we need to correct these terms for the dimensional scale.

Preserve Torque Scaling:
Rotational Springs:
 T = K * (Theta-Theta_0)
X^2 * Y * T = X^2 * Y * K * (Theta-Theta_0)

Rotational Dampers:
 T = B * (w-w_0)
X^2 * Y * T = X^2 * Y * B * (w-w_0)

Therefore, we get the following scaling laws for rotational springs and dampers:

	Property
	Scale
	Formula

	Spring Stiffness
	X2
	K_sim = X2*K_real

	Damping
	X2
	B_sim = X2*B_real

We set these values in the joint definition file for each joint.

Scaling data back to real units

Since the simulations run with a certain length scaling, X, and mass scaling, Y, we need to scale the output data back to real units. Doing this is easy, just inverting all the relationships from above.

	Property
	Scale
	Formula

	Angle
	1
	Theta_real= Theta_sim

	Angular Velocity
	1
	w_real = w_sim

	Length
	1/X
	L_real = (1/X)*L

	Linear Velocity
	1/X
	v_real = (1/X)*v_sim

	Gravity
	1/X
	F_real = (1/X)*F_sim

	Forces
	1/X
	F_sim = X * F_real

	Torques
	1/X2
	T_real = (1/X2)*T_sim

	Inertias
	1/X2
	I_real = (1/X2)*I_sim

 SoMo in Action

SoMo in Action

 <no title>

 <no title>

 _images/rubiks_cross_new_wide_crop.jpg

_images/model_schematic.png
Control Inputs: 1, ug, 13, uyg
SoMo Manipulator | |T1,; = U; + Tp1,i

Rigid Base

T1,0
a) b) SoMo Assembly 9) SoMo Actuator

SoMo Link

Cube Cylinder Capsule Stadium Links connected by joint

_images/real_fingers.png

_images/beam_discrete.jpg

_images/beam_tip_load.jpg

_images/joint.jpg

nav.xhtml

 Table of Contents

 		
 SoMo: Fast, Accurate Simulations of Continuum Robots in Complex Environments

 		
 Getting Started

 		
 Installation

 		
 Basic Usage

 		
 Scaling the World

 		
 Examples

 		
 Basic Examples

 		
 Calibration to Hardware

 		
 Blocked Force Testing

 		
 SoMo Assemblies

 		
 Design Studies

 		
 Whole-Arm Manipulation

 		
