

    
      
          
            
  
SoMo: Fast, Accurate Simulations of Continuum Robots in Complex Environments

[image: _images/rubiks_cross_new_wide_crop.jpg]
SoMo is a light wrapper around pybullet that facilitates
the simulation of continuum manipulators.

SoMo (SoftMotion) is a framework to facilitate the
simulation of continuum manipulator motion in PyBullet physics engine [https://github.com/bulletphysics/bullet3/tree/master/examples/pybullet]. In SoMo,
continuum manipulators are approximated as a series of rigid links
connected by spring-loaded joints. SoMo makes it easy to create URDFs of
such approximated manipulators and load them into pybullet’s rigid body
simulator. With SoMo, environments with various continuum manipulators
(such as hands with soft fingers or snakes) can be created
and controlled with only a few lines of code.
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Quick Install

Check out the Installation Instructions


Note

Coming soon: pip install!





Explore the Examples

Check out the Examples, or run any of the files in the examples folder. “examples/basic” is a great place to start!



Links


	Documentation: Read the Docs [https://somo.readthedocs.io/en/latest/]


	pip install: View on PyPi [https://pypi.org/project/somo/] (Not Launched Yet)


	Source code: Github [https://github.com/graulem/somo]






Contact

If you have questions, or if you’ve done something interesting with this package, get in touch with Moritz Graule!

If you find a problem or want something added to the library, open an issue on Github [https://github.com/graulem/somo/issues].



Citation

When citing SoMo, use this citation:

@inproceedings{graule2020somo,
   title={SoMo: Fast and Accurate Simulations of Continuum Robots in Complex Environments},
   author={Graule, Moritz A. and Teeple, Clark B and McCarthy, Thomas P and St. Louis, Randall C and Kim, Grace R and Wood, Robert J},
   booktitle={2021 IEEE International Conference on Intelligent Robots and Systems (IROS)},
   pages={In Review},
   year={2021},
   organization={IEEE}
}







Cited In…

SoMo has enabled other work:


	C.B. Teeple, R.C. St. Louis, M.A Graule, and R.J. Wood, Digit Arrangement for Soft Robotic Hands: Enhancing Dexterous In-Hand Manipulation, In Review, IROS 2021


	C.B. Teeple, G.R. Kim, M.A Graule, and R.J. Wood, An Active Palm Enhances Dexterity for Soft Robotic In-Hand Manipulation, ICRA 2021
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Getting Started

Here’s how to get up and running with SoMo.



	Installation

	Basic Usage

	Scaling the World
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Installation


Requirements


	Python 3.6 [https://www.python.org/downloads/release/python-360/] +


	Tested on:


	Ubuntu 16.04 and Ubuntu 18.04 with Python 3.6.9


	Ubuntu 20.04 with Python 3.6.9, 3.7.9 and 3.8.2


	Windows 10 with Python 3.7 and 3.8 through Anaconda [https://www.anaconda.com/products/individual#Downloads]






	Recommended: pip (sudo apt-get install python3-pip)


	Recommended (for Ubuntu): venv [https://docs.python.org/3/library/venv.html]
(sudo apt-get install python3-venv)






Setup


	Make sure your system meets the requirements


	Clone this repository


	Set up a dedicated virtual environment using venv


	Activate virtual environment


	Install requirements from this repo:
$ pip install -r requirements.txt


	Install this module:


	either by cloning this repo to your machine and using
pip install -e . from the repo root, or with


	pip install git+https://github.com/graulem/somo






	To upgrade to the newest version:
$ pip install git+https://github.com/graulem/somo --upgrade
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Basic Usage

This will walk you through setting up your first manipulator and complete simulation.


On this page


	Set up a definition file


	Build a SoMo Manipulator from a definition


	Load the definition from a file directly


	Modify a definition before creating






	Control a manipulator







Set up a definition file

SoMo manipulators are defined as dictionaries describing one or more actuators, each of which is made up of several links and joints.

[image: ../_images/model_schematic.png]
Here is an example of a typical definition of a soft finger made up of one bending actuator. You can copy this or directly download it:

ihm_finger_def.yaml



Build a SoMo Manipulator from a definition


Note

This documentation is coming soon!




Load the definition from a file directly


Note

TODO





Modify a definition before creating

SoMo definitions are just python dictionaries, so you can load them in, make modifications, then instantiate a manipulator object.




Control a manipulator


Note

TODO
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Scaling the World

Bullet physics works best for objects larger than 0.1 simulation units. This is important for us becasue many real soft robots are on the order of 0.1m in length, leaving us no room to discretize them into smaller links. We must scale the world up to avoid numerical precision errors in bullet.


Bullet physics guidelines

Unfortunately the bullet physics wiki has been down for over a year now, so we must use an archived version of the page HERE [https://web.archive.org/web/20170713085948/http://www.bulletphysics.org/mediawiki-1.5.8/index.php/Scaling_The_World]. In addition, there is a small typo in that wiki that makes a big difference in how we scale inertias as discussed HERE [https://pybullet.org/Bullet/phpBB3/viewtopic.php?f=9&t=4160&p=15526#p15516]. We use the convention agreed upon in the forum post.



Standard scaling laws

If we scale all lengths by X, we need to correct other variables:




	Property
	Scale
	Formula





	Angle
	1
	Theta_sim = 1.0 * Theta_real



	Angular Velocity
	1
	w_sim = 1.0 * w_real



	Length
	X
	L_sim = X * L_real



	Linear Velocity
	X
	v_sim = X * v_real



	Gravity
	X
	g_sim = X * g_real



	Forces
	X
	F_sim = X * F_real



	Torques
	X2
	T_sim = X2 * T_real



	Inertias
	X2
	I_sim = X2 * I_real




In addition, we could scale masses by a factor Y, leading to more corrections:




	Property
	Scale
	Formula





	Forces
	Y
	F_sim = Y*F_real



	Torques
	Y
	T_sim = Y*T_real



	Inertias
	Y
	I_sim = Y*I_real




Combining length and mass scaling, we get combined corrections:




	Property
	Scale
	Formula





	Forces
	X*Y
	F_sim = X*Y*F_real



	Torques
	X2*Y
	T_sim = X2*Y*T_real



	Inertias
	X2*Y
	I_sim = X2*Y*I_real




Note: We could choose a constant density, thus setting Y=X:raw-html-m2r:`<sup>3</sup>`. However, we do not actually need to do mass scaling according to the forum post from above, so we chose to set Y=1 for simplicity.

We set the sizes of objects in our world according to these units in the various URDF and actuator definition files, and it’s up to us to scale these dimensions accordingly. We also need to correct the gravitational constant when setting up our simulation. All other forces, torques, etc are calculated internally.



SoMo-specific scaling

Since we are discretizing the soft robots into rigid links with angular stiffness and damping terms, we need to correct these terms for the dimensional scale.

# Preserve Torque Scaling:
# Rotational Springs:
          T =           K * (Theta-Theta_0)
X^2 * Y * T = X^2 * Y * K * (Theta-Theta_0)

# Rotational Dampers:
          T =           B * (w-w_0)
X^2 * Y * T = X^2 * Y * B * (w-w_0)





Therefore, we get the following scaling laws for rotational springs and dampers:




	Property
	Scale
	Formula





	Spring Stiffness
	X2
	K_sim = X2*K_real



	Damping
	X2
	B_sim = X2*B_real




We set these values in the joint definition file for each joint.



Scaling data back to real units

Since the simulations run with a certain length scaling, X, and mass scaling, Y, we need to scale the output data back to real units. Doing this is easy, just inverting all the relationships from above.




	Property
	Scale
	Formula





	Angle
	1
	Theta_real= Theta_sim



	Angular Velocity
	1
	w_real = w_sim



	Length
	1/X
	L_real = (1/X)*L



	Linear Velocity
	1/X
	v_real = (1/X)*v_sim



	Gravity
	1/X
	F_real = (1/X)*F_sim



	Forces
	1/X
	F_sim = X * F_real



	Torques
	1/X2
	T_real = (1/X2)*T_sim



	Inertias
	1/X2
	I_real = (1/X2)*I_sim
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Examples

Several examples of the power and versatillity of SoMo are shown here. You can find them in the examples folder [https://github.com/GrauleM/somo/tree/main/examples] in the github repo.



	Basic Examples
	Calibration to Hardware

	Blocked Force Testing

	SoMo Assemblies





	Design Studies




	Whole-Arm Manipulation
	Playing Basketball





	Locomotion
	Snake Locomotion
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Basic Examples

These showcase basic functionalities.



	Calibration to Hardware

	Blocked Force Testing

	SoMo Assemblies
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Calibration to Hardware


Introduction

We are using a discretized model for soft actuators the converts continuous bending beams into rigid links and pin joints with torsional stiffnesses. To calibrate our simulated system to the real system, we need some way to relate deformation to joint angles.



Basic formulas

Deflection, \(\delta\) , of cantilever beam as a function of position, \(x\) along the beam, where \(\delta_L\) is the deflection at the tip, and \(L\) is the length of the beam:

\(\begin{align*} \delta(x) = \delta_L \left ( \frac{3x^2}{2L_2} - \frac{x^3}{2L^3} \right ) \\  \end{align*}\)


[image: beam with tip load]

A simple beam of length \(L\) with a tip load \(F\) undergoes a tip deflection \(\delta\)



Bending moment, \(M_b\) of a cantilever beam with a tip load, \(F_{tip}\), as a function of position, \(x\) along the beam:

\(\begin{align*}  M_b = F_{tip}(L-x) \\  \end{align*}\)

Linear bending stiffness, \(K_b\) of a cantilever beam at the tip:

\(\begin{align*}  K_b = \frac{F_tip}{\delta_L} \\  \end{align*}\)



Calibrating Joint Stiffnesses

For an actuator split evenly into \(N\) segments, we make a few assumptions:


	Bending stiffness represents the linear bending stiffness at the tip of the actuator at its unloaded state


	Assume small angles (for calibration purposes), so \(sin(\theta) = \theta\)


	We want to match the deflection of each segment with an appropriate spring force given the bending moment in the actuator.





[image: discretized beam with tip load]

The simple beam is discretized into \(N\) equal-length segments connected by pin joints.



We find the formula for the deflection at the tip of the first segment during a load at the actuator’s tip to be:

\(\begin{align*}  \delta(x=\frac{L}{N}) &= \left ( \frac{3(\frac{L}{N})^2}{2L_2} - \frac{(\frac{L}{N})^3}{2L^3} \right ) \delta_L \\  &= \left ( \frac{3L^2}{2N^2L^2} - \frac{L^3}{2N^3 L^3} \right ) \delta_L \\       &= \left ( \frac{3}{2N^2} - \frac{1}{2N^3} \right ) \delta_L = \delta_1  \end{align*}\)

For the first segment with a length, \(\frac{L}{N}\), deflection \(\delta_1\), we can define a rotational spring constant, \(\kappa_1\), that achieves an angle, \(\theta_1\) when a torque, \(\tau_1\), is applied on the joint.


[image: A simple pin joint with rotational spring]

A simple pin joint with rotational spring



Thus, we obtain an equation for the spring constant:

\(\begin{align*}     \kappa_1 = \frac{\tau_1}{\theta_1} \end{align*}\)

We can find what \(\theta_1\) needs to be using the formula:

\(\begin{align*}     \sin(\theta_1) = \frac{\delta_1}{L_1}  = \frac{\delta_1}{\frac{L}{N}} \end{align*}\)

and using the small angle assumption, we obtain \(\sin(\theta) = \theta\), so:

\(\begin{align*}     \theta_1 = \frac{N\delta_1}{L} \end{align*}\)

Now, \(\tau_1\) is assumed to be the bending moment withheld by this first link (the moment at \(x=0\)). :

\(\begin{align*}     \tau_1 &= F_{tip}(L-0) = F_{tip}L \end{align*}\)

Thus, we can move back to the joint stiffness:

\(\begin{align*}     \kappa_1 = \frac{\tau_1}{\theta_1} &= \frac{F_{tip}L}{ \frac{N\delta_1}{L}} \\     &= \frac{F_{tip}L)}{ \frac{N}{L}\left ( \frac{3}{2N^2} - \frac{1}{2N^3} \right ) \delta_L } \\     &= \frac{L}{ \frac{N}{L}\left ( \frac{3}{2N^2} - \frac{1}{2N^3} \right ) }\frac{F_{tip}}{\delta_L } \\    \kappa_1 &= \frac{ 1 }{ \frac{3}{2N} - \frac{1}{2N^2}  } L^2 K_b \end{align*}\)



Determining appropriate actuator torques

We need to determine the actuation moment applied to actuators. Many of our physical systems are air-driven, so we can use blocked-force measurements at various pressures to get a rough estimate of actuation torques at pressures of interest.

During a blocked force measurement, we assume all force produced is balancing the internal actuation moment. Given this assumption, we get:

\(\begin{align*}     M_{act} =  F_b L \end{align*}\)



Example:


[image: Real hardware]

Real soft robotic hand platform from [Abondance et al., 2020], where the mechanical properties of the fingers have been characterized.



From our paper on in-hand manipulation with soft fingers [Abondance et al., 2020], we measured the linear bending stiffnesses of our 0.1 m long fingers in the grasping and side axes:

\(\begin{align*}     K_g =& 6.12 \text{ N/m}  &  K_s =& 29.05 \text{ N/m} \end{align*}\)

In our typical SoMo simulation of these fingers, we use 5 joints in each direction, so $N$ = 5 and $L$ = 0.1 m. Putting this through the formula for joint stiffnesses, we get:

\(\begin{align*}     K_{g, sim} =& 0.219 \text{ N/m}  &  K_{s, sim} =& 1.038 \text{ N/m} \end{align*}\)

The last step is to scale the joint stiffnesses by the square of the world scale per the world scaling discussion. In many of our examples we use a world scale of 20, so scaling the stiffnesses by 400 results in:

\(\begin{align*}     K_{g, sim} = 87.4 &  \text{ sim stiffness units}  &  K_{s, sim} =& 415.0 \text{ sim stiffness units} \end{align*}\)

To apply realistic actuation torques to the system, we calibrate the grasping axis on the 100 kPa value, which produced 0.75 N of force over the 0.1m length finger body.

\(\begin{align*}     \tau_{act} = M_{act} =  F_b L = 0.075 \text{ Nm} \end{align*}\)

Then we transform torques by the square of the world scale, so if we want to apply 100 kPa to the real life fingers, the the simulated fingers need:

\(\begin{align*}     \tau_{grasp} =  30 \text{ sim torque units} \end{align*}\)

For the side-axis, we explicitly control the actuation torques in simulation, but the real system uses a pressure differential. Based on a differential of 100kPa to achieve reasonable side-to-side motion in the hardware, we estimate approximately 3 times the value for the grasping axis based on observations, resulting in:

\(\begin{align*}     \tau_{side} =  90 \text{ sim torque units} \end{align*}\)

All these values produce physically accurate simulations that seem to work well!



References



	abondance2020dexterous(1,2)

	Sylvain Abondance, Clark B Teeple, and Robert J Wood. A dexterous soft robotic hand for delicate in-hand manipulation. IEEE Robotics and Automation Letters, 5(4):5502–5509, 2020.
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Blocked Force Testing


Note

TODO
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SoMo Assemblies


Note

TODO
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Design Studies

SoMo can be used for a variety of design studies where building physical hardware would be prohibitively time-consuming.
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Whole-Arm Manipulation

SoMo can be used for manipulation studies.



	Playing Basketball
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Playing Basketball
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Locomotion

SoMo can be used for locomotion studies



	Snake Locomotion
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Snake Locomotion
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Class Reference

Each page contains details and full API reference for all the classes in the SoMo Framework.

For an explanation of how to use all of it together, see Basic Usage.



	SoMo Manipulators

	SoMo Assemblies

	Generating Parameter Sweeps
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SoMo Manipulators

SoMo provides an easy way to generate continuum manipulators. Manipulators can be comprised of several serially-chained actuators (SMActuatorDefinition), made up of a series of links (SMLinkDefinition) connected by spring-loaded joints (SMJointDefinition),

To actually implement a manipulator, you can define it in a dictionary or yaml/json file, and load the definition as a SMManipulatorDefinition object. The lower-level definitions are taken care of internally.


	
class somo.sm_link_definition.SMLinkDefinition(shape_type: str, dimensions: [Union[float, int]], mass: Union[float, int], inertial_values: [Union[float, int]], material_color: [Union[float, int]], material_name: str, origin_offset: [Union[float, int]] = None, visual_geometry_scaling_factor=1.0)

	SMLinkDescription is correct upon instantiation.

Example json representation:
link_example.json # todo update example presentation
{


shape_type:         xx finish,
dimensions:         xx finish,
mass:               xx,
inertial_values:    xx,
material_color:     xx,
material_name:      ,




}


	
static assert_required_fields(dict_definition: dict)

	




	
static from_file(file_path: str) → somo.sm_link_definition.SMLinkDefinition

	




	
static from_json(json_file_path: str) → somo.sm_link_definition.SMLinkDefinition

	




	
reduce_height(height_scaling_factor)

	




	
to_json()

	








	
class somo.sm_joint_definition.SMJointDefinition(joint_type: str, axis: Union[None, List] = None, limits: Optional[List] = None, spring_stiffness: Optional[Union[float, int]] = None, joint_neutral_position: Optional[Union[float, int]] = None, neutral_axis_offset: [Union[float, int, NoneType]] = None, joint_control_limit_force: [Union[float, int, NoneType]] = None)

	SMJointDefinition is correct upon instantiation.

Example json representation:
link_example.json # todo fix
{


xx




}


	
static assert_required_fields(dict_definition: dict)

	




	
static from_file(file_path: str) → somo.sm_joint_definition.SMJointDefinition

	




	
static from_json(json_file_path: str) → somo.sm_joint_definition.SMJointDefinition

	




	
to_json()

	








	
class somo.sm_actuator_definition.SMActuatorDefinition(actuator_length: Union[float, int], n_segments: int, link_definition: Union[somo.sm_link_definition.SMLinkDefinition, Dict, str], joint_definitions: [Union[somo.sm_joint_definition.SMJointDefinition, Dict, str]], planar_flag: Union[bool, int])

	
	
static assert_required_fields(dict_definition: dict)

	




	
static from_file(file_path: str) → somo.sm_actuator_definition.SMActuatorDefinition

	




	
static from_json(json_file_path: str) → somo.sm_actuator_definition.SMActuatorDefinition

	




	
to_json()

	








	
class somo.sm_manipulator_definition.SMManipulatorDefinition(n_act: Union[float, int], base_definition: Optional[somo.sm_link_definition.SMLinkDefinition], actuator_definitions: [Union[somo.sm_actuator_definition.SMActuatorDefinition, Dict, str]], manipulator_name: str, tip_definition: Optional[somo.sm_link_definition.SMLinkDefinition] = None, urdf_filename: Optional[str] = None, tip_definitions: Union[None, List] = None)

	
	
static assert_required_fields(dict_definition: dict)

	




	
static from_file(file_path: str) → somo.sm_manipulator_definition.SMManipulatorDefinition

	




	
static from_json(json_file_path: str) → somo.sm_manipulator_definition.SMManipulatorDefinition

	




	
to_json()
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SoMo Assemblies

You can connect several manipulators object into assemblies such as a hand with several fingers, or a body with legs.


Note

Documentation for this is coming soon!
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Generating Parameter Sweeps

Once you have your environment set up, you can easily run parameter sweeps using the built-in sweep framework.


Warning

This is a work in progress. Some parts of this module are not very elegant, but we are working on this!




Base Functionality


	
class somo.sweep.BatchSimulation

	
	
load_run_list(todo_filename='runs_todo.yaml', recalculate=False)

	




	
run(run_function, parallel=True, num_processes=None)

	








	
class somo.sweep.DataLabeler(label_functions)

	
	
process_all(config_file, label_function=None, **kwargs)

	Process all datasets within a config file






	
set_global_scale(scale)

	








	
class somo.sweep.RunGenerator

	
	
from_file(config_file, todo_filename='runs_todo.yaml')

	Generate a set of runs from a config file






	
generate_params(config)

	Generate all permutations of a given set of sweep parameters






	
make_2d_slices(config)

	Make a simple set of runs using all permutations of sweep parameters






	
make_simple(config, save_todo=True)

	Make a simple set of runs using all permutations of sweep parameters











Experimental Classes


Warning

These classes enable experimental functionality. Use at your own risk.




	
class somo.sweep.ContourPlotter(config_file)

	
	
make_plots(labels=None, show=False, recalculate=False, num_bins=12)

	




	
plot_one(success_filename, labels=None, show=False, replace=False, aux_savepath=None)

	Make a plot of the grasp type/success rate of 2D sweep data.






	
set_axes_equal(in_set)

	




	
set_colors(status_colors=None)

	




	
set_status_colors(label_set=None, color_set=None, color_labels=None)

	




	
set_status_colors_dict(label_list)

	




	
set_status_colors_label(label_name='default', color_set=None)

	








	
class somo.sweep.GridPlotter(config_file)

	
	
make_plots(labels=None, show=False, recalculate=False)

	




	
plot_one(success_filename, labels=None, show=False, replace=False, aux_savepath=None)

	Make a plot of the grasp type/success rate of 2D sweep data.






	
set_axes_equal(in_set)

	




	
set_colors(status_colors=None, fingertip=None)

	




	
set_fingertip(state)

	




	
set_status_colors(label_set=None, color_set=None, color_labels=None)

	




	
set_status_colors_dict(label_list)

	




	
set_status_colors_label(label_name='default', color_set=None)
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Contributing

Contributing Checklist


	only through a new branch and reviewed PR (no pushes to master!)


	always use Black Code Formatter [https://pypi.org/project/black/] for code formatting


	always bump the version of your branch by increasing the version
number listed in somo/_version.py
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  SoMo is a light wrapper around pybullet that facilitates
the simulation of continuum manipulators.

SoMo (SoftMotion) is a framework to facilitate the
simulation of continuum manipulator motion in PyBullet physics engine [https://github.com/bulletphysics/bullet3/tree/master/examples/pybullet]. In SoMo,
continuum manipulators are approximated as a series of rigid links
connected by spring-loaded joints. SoMo makes it easy to create URDFs of
such approximated manipulators and load them into pybullet’s rigid body
simulator. With SoMo, environments with various continuum manipulators
(such as hands with soft fingers or snakes) can be created
and controlled with only a few lines of code.
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Quick Install

Check out the Installation Instructions


Note

Coming soon: pip install!





Explore the Examples

Check out the Examples, or run any of the files in the examples folder. “examples/basic” is a great place to start!



Links


	Documentation: Read the Docs [https://somo.readthedocs.io/en/latest/]


	pip install: View on PyPi [https://pypi.org/project/somo/] (Not Launched Yet)


	Source code: Github [https://github.com/graulem/somo]






Contact

If you have questions, or if you’ve done something interesting with this package, get in touch with Moritz Graule!

If you find a problem or want something added to the library, open an issue on Github [https://github.com/graulem/somo/issues].



Citation

When citing SoMo, use this citation:

@inproceedings{graule2020somo,
   title={SoMo: Fast and Accurate Simulations of Continuum Robots in Complex Environments},
   author={Graule, Moritz A. and Teeple, Clark B and McCarthy, Thomas P and St. Louis, Randall C and Kim, Grace R and Wood, Robert J},
   booktitle={2021 IEEE International Conference on Intelligent Robots and Systems (IROS)},
   pages={In Review},
   year={2021},
   organization={IEEE}
}
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	C.B. Teeple, R.C. St. Louis, M.A Graule, and R.J. Wood, Digit Arrangement for Soft Robotic Hands: Enhancing Dexterous In-Hand Manipulation, In Review, IROS 2021


	C.B. Teeple, G.R. Kim, M.A Graule, and R.J. Wood, An Active Palm Enhances Dexterity for Soft Robotic In-Hand Manipulation, ICRA 2021
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Scaling the World

Bullet physics works best for objects larger than 0.1 simulation units. This is important for us becasue many real soft robots are on the order of 0.1m in length, leaving us no room to discretize them into smaller links. We must scale the world up to avoid numerical precision errors in bullet.


Bullet physics guidelines

Unfortunately the bullet physics wiki has been down for over a year now, so we must use an archived version of the page HERE [https://web.archive.org/web/20170713085948/http://www.bulletphysics.org/mediawiki-1.5.8/index.php/Scaling_The_World]. In addition, there is a small typo in that wiki that makes a big difference in how we scale inertias as discussed HERE [https://pybullet.org/Bullet/phpBB3/viewtopic.php?f=9&t=4160&p=15526#p15516]. We use the convention agreed upon in the forum post.



Standard scaling laws

If we scale all lengths by X, we need to correct other variables:




	Property
	Scale
	Formula





	Angle
	1
	Theta_sim = 1.0 * Theta_real



	Angular Velocity
	1
	w_sim = 1.0 * w_real



	Length
	X
	L_sim = X * L_real



	Linear Velocity
	X
	v_sim = X * v_real



	Gravity
	X
	g_sim = X * g_real



	Forces
	X
	F_sim = X * F_real



	Torques
	X2
	T_sim = X2 * T_real



	Inertias
	X2
	I_sim = X2 * I_real




In addition, we could scale masses by a factor Y, leading to more corrections:
| *Property***       |      ***Scale*** | ***Formula***                   |
|———————-|—————–:|———————————|
| **Forces           | Y | F_sim = Y*F_real |
| Torques          | Y | T_sim = Y*T_real |
| Inertias         | Y | I_sim = Y*I_real |

Combining length and mass scaling, we get combined corrections:
| *Property***       |      ***Scale*** | ***Formula***                   |
|———————-|—————–:|———————————|
| **Forces           | X*Y | F_sim = X*Y*F_real |
| Torques          | X2Y | T_sim = X:raw-html-m2r:`<sup>2</sup>`*Y*T_real |
| **Inertias*         | X2*Y | I_sim = X2*Y*I_real |

Note: We could choose a constant density, thus setting Y=X:raw-html-m2r:`<sup>3</sup>`. However, we do not actually need to do mass scaling according to the forum post from above, so we chose to set Y=1 for simplicity.

We set the sizes of objects in our world according to these units in the various URDF and actuator definition files, and it’s up to us to scale these dimensions accordingly. We also need to correct the gravitational constant when setting up our simulation. All other forces, torques, etc are calculated internally.



SoMo-specific scaling

Since we are discretizing the soft robots into rigid links with angular stiffness and damping terms, we need to correct these terms for the dimensional scale.

# Preserve Torque Scaling:
# Rotational Springs:
          T =           K * (Theta-Theta_0)
X^2 * Y * T = X^2 * Y * K * (Theta-Theta_0)

# Rotational Dampers:
          T =           B * (w-w_0)
X^2 * Y * T = X^2 * Y * B * (w-w_0)





Therefore, we get the following scaling laws for rotational springs and dampers:




	Property
	Scale
	Formula





	Spring Stiffness
	X2
	K_sim = X2*K_real



	Damping
	X2
	B_sim = X2*B_real




We set these values in the joint definition file for each joint.



Scaling data back to real units

Since the simulations run with a certain length scaling, X, and mass scaling, Y, we need to scale the output data back to real units. Doing this is easy, just inverting all the relationships from above.




	Property
	Scale
	Formula





	Angle
	1
	Theta_real= Theta_sim



	Angular Velocity
	1
	w_real = w_sim



	Length
	1/X
	L_real = (1/X)*L



	Linear Velocity
	1/X
	v_real = (1/X)*v_sim



	Gravity
	1/X
	F_real = (1/X)*F_sim



	Forces
	1/X
	F_sim = X * F_real



	Torques
	1/X2
	T_real = (1/X2)*T_sim



	Inertias
	1/X2
	I_real = (1/X2)*I_sim
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